3,821 research outputs found

    World-sheet dynamics of ZZ branes

    Full text link
    We show how non-compact space-time (ZZ branes) emerges as a limit of compact space-time (FZZT branes) for specific ratios between the square of the boundary cosmological constant and the bulk cosmological constant in the (2,2m-1) minimal model coupled to two-dimensional quantum gravity.Comment: 14 page

    Inverse magnetic catalysis and regularization in the quark-meson model

    Get PDF
    Motivated by recent work on inverse magnetic catalysis at finite temperature, we study the quark-meson model using both dimensional regularization and a sharp cutoff. We calculate the critical temperature for the chiral transition as a function of the Yukawa coupling in the mean-field approximation varying the renormalization scale and the value of the ultraviolet cutoff. We show that the results depend sensitively on how one treats the fermionic vacuum fluctuations in the model and in particular on the regulator used. Finally, we explore a BB-dependent transition temperature for the Polyakov loop potential T0(B)T_0(B) using the functional renormalization group. These results show that even arbitrary freedom in the function T0(B)T_0(B) does not allow for a decreasing chiral transition temperature as a function of BB. This is in agreement with previous mean-field calculations.Comment: 13 pages, 5 figure

    Gaussian process regression can turn non-uniform and undersampled diffusion MRI data into diffusion spectrum imaging

    Full text link
    We propose to use Gaussian process regression to accurately estimate the diffusion MRI signal at arbitrary locations in q-space. By estimating the signal on a grid, we can do synthetic diffusion spectrum imaging: reconstructing the ensemble averaged propagator (EAP) by an inverse Fourier transform. We also propose an alternative reconstruction method guaranteeing a nonnegative EAP that integrates to unity. The reconstruction is validated on data simulated from two Gaussians at various crossing angles. Moreover, we demonstrate on non-uniformly sampled in vivo data that the method is far superior to linear interpolation, and allows a drastic undersampling of the data with only a minor loss of accuracy. We envision the method as a potential replacement for standard diffusion spectrum imaging, in particular when acquistion time is limited.Comment: 5 page

    Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop

    Get PDF
    We use the Polyakov loop coupled quark-meson model to approximate low energy QCD and present results for the chiral and deconfinement transitions in the presence of a constant magnetic background BB at finite temperature TT and baryon chemical potential μB\mu_B. We investigate effects of various gluoni potentials on the deconfinement transition with and without a fermionic backreaction at finite BB. Additionally we investigate the effect of the Polyakov loop on the chiral phase transition, finding that magnetic catalysis at low μB\mu_B is present, but weakened by the Polyakov loop.Comment: 17 pages and 8 figs. v2: added ref

    Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3\text{Bi}_2\text{Se}_3-class of topological insulators

    Get PDF
    Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3\text{Bi}_2\text{Se}_3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytically the effects of strain on the electronic structure of Bi2Se3\text{Bi}_2\text{Se}_3. For the most experimentally relevant surface termination we analytically derive the surface state spectrum, revealing an anisotropic Dirac cone with elliptical constant energy counturs giving rise to different velocities in different in-plane directions. The spin-momentum locking of strained Bi2Se3\text{Bi}_2\text{Se}_3 is shown to be modified and for some strain configurations we see a non-zero spin component perpendicular to the surface. Hence, strain control can be used to manipulate the spin degree of freedom via the spin-orbit coupling. We show that for a thin film of Bi2Se3\text{Bi}_2\text{Se}_3 the surface state band gap induced by coupling between the opposite surfaces changes opposite to the bulk band gap under strain. Tuning the surface state band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap and optimization of optical properties relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical expressions for the effective mass tensor of the Bi2_2Se3_3 class of materials as a function of strain and electric field

    Numerical Simulations of Intermittent Transport in Scrape-Off Layer Plasmas

    Full text link
    Two-dimensional fluid simulations of interchange turbulence for geometry and parameters relevant for the scrape-off layer of confined plasmas are presented. We observe bursty ejection of particles and heat from the bulk plasma in the form of blobs. These structures propagate far into the scrape-off layer where they are lost due to transport along open magnetic field lines. From single-point recordings it is shown that the blobs have asymmetric conditional wave forms and lead to positively skewed and flat probability distribution functions. The radial propagation velocity may reach one tenth of the sound speed. These results are in excellent agreement with recent experimental measurements.Comment: 8 pages, 7 figure

    Intermittent transport in edge plasmas

    Full text link
    The properties of low-frequency convective fluctuations and transport are investigated for the boundary region of magnetized plasmas. We employ a two-dimensional fluid model for the evolution of the global plasma quantities in a geometry and with parameters relevant to the scrape-off layer of confined toroidal plasmas. Strongly intermittent plasma transport is regulated by self-consistently generated sheared poloidal flows and is mediated by bursty ejection of particles and heat from the bulk plasma in the form of blobs. Coarse grained probe signals reveal a highly skewed and flat distribution on short time scales, but tends towards a normal distribution at large time scales. Conditionally averaged signals are in perfect agreement with experimental measurements.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Probability of rail break caused by out-of-round wheel loads

    Get PDF
    A simulation procedure to predict the probability of rail break due to a measured wheel load spectrum is presented. The load distribution includes a representative proportion of high-magnitude dynamic loads generated by out-of-round wheels. Linear elastic fracture mechanics is applied to determine the stress intensities of preexisting rail head cracks in a continuously welded rail subjected to combined bending and temperature loading. Rail bending moments are evaluated using a validated time-domain model of dynamic vehicle-track interaction. The considered multi-dimensional stochastic parameter space includes field test data of dynamic loads from a wheel impact load detector and crack depths from eddy current data. Meta-models based on polyharmonic splines are applied to reduce the computational cost of the analysis. Supported by the extensive field test data, the simulation procedure is demonstrated by investigating the influences of freight traffic type, track support stiffness and rail temperature on the probability of a rail break initiated at a pre-existing rail head crack
    corecore